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Busse’s annulus is considered as a model of thermal convection inside the Earth’s 
liquid core. The conventional tilted base and top are modified by azimuthal sinusoidal 
corrugations so that the effects of surface topography can be investigated. The annu- 
lus rotates rapidly about its axis of symmetry with gravity directed radially inwards 
towards the rotation axis. An unstable radial temperature gradient is maintained and 
the resulting Boussinesq convection is considered at small Ekman number. Since the 
corrugations on the boundaries cause the geostrophic contours to be no longer circu- 
lar, strong geostrophic flows may be driven by buoyancy forces and damped by Ekman 
suction. When the bumps are sufficiently large, instability of the static state is domi- 
nated by steady geostrophic flow with the convection pattern locked to the bumps. As 
the bump size is decreased, oscillatory geostrophic flow is possible but the preferred 
mode is modulated on a long azimuthal length scale and propagates as a wave east- 
wards. This mode only exists in the presence of bumps and is not to be confused with 
the thermal Rossby waves which are eventually preferred as the bump height tends 
to zero. Like thermal Rossby waves, the new modes prefer to occupy the longest 
available radial length scale. In this long-length-scale limit, two finite-amplitude states 
characterized by uniform geostrophic flows can be determined. The small-amplitude 
state resembles Or & Busse’s (1987) mean flow instability. On losing stability the solu- 
tion jumps to the more robust large-amplitude state. Eventually, for sufficiently large 
Rayleigh number and bump height, it becomes unstable to a long-azimuthal-length- 
scale travelling wave. The ensuing finite-amplitude wave and the mean flow, upon 
which it rides, are characterized by a geostrophic flow, which is everywhere westward. 

1. Introduction 
The problem of buoyantly driven rotating convection is of fundamental interest in 

connection with motion inside the Earth‘s fluid core. There, relative to a frame rotating 
at angular velocity f2 with the Earth, motion is slow and at lowest order geostrophic: 

2ps2 x u = -VP.  

Here u and P are the fluid velocity and pressure, while the density p is assumed 
constant in the Boussinesq approximation which we adopt. Such flow is limited by the 
constraints of the Proudman-Taylor theorem which states that motion is independent 
of the coordinate parallel to the rotation axis. As Greenspan (1968) explains, this 
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means that columns of fluid move following geostrophic contours on the upper and 
lower boundaries separated by constant height. In the case of spherical boundaries 
inside the Earth’s fluid core, the geostrophic contours are circles centred on the 
rotation axis and motion lies on the geostrophic circular cylinders generated by them. 

When small viscous effects are considered as measured by the Ekman number 

E := v/szD2(<< l), (1.2) 

where v is the kinematic viscosity and D is an appropriate radial core length scale (see 
the remarks above (1.7)), some small driving force is necessary to maintain motion. 
In the case of thermal or compositional buoyancy, convective motion in a sphere or 
spherical shell necessarily has a radial component and so is not purely geostrophic. 
Instead, as Roberts (1968) and Busse (1970) explained, convection at the onset of 
instability takes the form of quasi-geostrophic axial rolls with short azimuthal length 
scale of order El l3 .  On this short length the constraints of the Proudman-Taylor 
theorem are relaxed by a balance of viscous and buoyancy forces. Exactly like 
Rossby waves, the rolls propagate azimuthally due to inertia and the influence of 
the slope of the top and bottom boundaries. The situation changes when the role 
of the magnetic field permeating the electrically conducting fluid core is considered. 
Then for sufficiently strong magnetic fields, the constraints of the Proudman-Taylor 
theorem can be overcome by the Lorentz force and motion occurs on much longer 
length scales. In this paper, however, only non-magnetic convection, which attracts 
continuing interest (see, for example, Zhang 1992), will be considered. 

The early convective models mentioned above concerned instabilities to spherically 
symmetric configurations. Nevertheless, Hide (1967) suggested that weak horizontal 
temperature variations and horizontally extensive topographic features at the core- 
mantle boundary (CMB) might produce hydrodynamical effects. Only recently has 
the possible importance of these inhomogeneities on convection been appreciated (see, 
for example, Gubbins & Richards 1986). The effect of thermal boundary anomalies 
in a rapidly rotating spherical shell was subsequently investigated by Zhang & 
Gubbins (1992, 1993) and more recently by Sun, Schubert & Glatzmaier (1994). The 
configuration is such that weak convection is always forced even when there is no 
adverse density gradient. As the Rayleigh number Ra (see (1.7) below) measuring 
that gradient is increased, an ‘imperfect bifurcation’ sets in at some critical value of 
Ra. They found that the preferred mode is convective rolls, which cease to propagate 
azimuthally but remain stationary, locked instead to the thermal inhomogeneities. This 
is an interesting feature which might have important implications for the geodynamo. 

In contrast, we are interested here in the role of topographic effects. It is well 
known that this influences core-mantle coupling and there is particular interest in 
mechanisms which might lead to angular momentum transfer between the fluid core 
and solid mantle, because of their importance in accounting for changes in the length 
of the day (see, for example, Hide 1989, and Hide et al. 1993). Electromagnetic 
effects play a crucial role (see, for example, Roberts 1988). Jault & Le Moue1 (1989, 
1993) have stressed the importance of geostrophic flows in this context and quantify 
the pressure torques at the CMB (see also Anufriev & Braginsky 1977). Unsteady 
effects have also been considered. Essentially, the radiation of waves due to large- 
scale motion over a bumpy boundary can also lead to mean couples. This idea 
has been explored in the magnetohydrodynamic context by Anufriev & Braginsky 
(1975), Moffatt & Dillon (1976) and Kuang & Bloxham (1993), all of whom employed 
two-dimensional topography as we do here. Indeed, our simple sinusoidal variation 
(1.11) has also been used by Busse & Wicht (1992) to characterize variations in the 
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electrical conductivity of the mantle at the CMB for the purpose of investigating 
its dynamo implications. The point which we wish to stress is that other related 
pioneering investigations have built their studies on comparable simple models. 

Like Jault & Le Moue1 (1989) our attention focuses on the role of geostrophic 
flows, but in contrast its influence on convection is our immediate concern. The direct 
consequence of bumps on the CMB is that the geostrophic cylinders are no longer 
circular and the buoyancy force F B  has a component tangent to them. When added 
to the geostrophic balance (l.l), the equation becomes 

2 p n X U = - V P + F g .  (1.3) 

Consider a pair of geostrophic contours on the upper and lower boundaries separated 
by a constant distance 2H. Let the unit outward normals to these boundaries be 
denoted by 1,+ and 1,- respectively and that of the geostrophic cylinder by 1,. The 
corresponding unit geostrophic tangent vector is lt := l,, x ln-/lln+ x 1,-I. If we form 
line integrals of (1.3) about closed curves C ( H )  with respect to arc length I parallel 
to the geostrophic contour and then integrate parallel to the rotation axis, we obtain 
the result 

2pQ(u * 1.) = (FB 1t/llQ x l t l ) ,  ( 1 . 4 ~ )  
where la := a/Q and 

(...) : = A - ’ /  ... dA (1.4b) 
A ( H )  

denotes the cylinder average over the geostrophic cylinder A(H) of area 

( 1 . 4 ~ )  

The term on the left-hand side of ( 1 . 4 ~ )  is proportional to A(u.1,) which measures 
the outward flux of fluid. Since it vanishes, we recover the generalized version of 
Taylor’s condition given by Fearn & Proctor (1992). Taylor (1963) originally stated 
his condition in the context of the magnetic Lorentz force, but when the geostrophic 
contours are no longer circular there is a buoyancy contribution to his integral on 
the right-hand side of (1 .4~) .  When, however, this integral fails to vanish, other small 
effects, so far neglected, must be included. For steady flows, the most important 
consideration is suction in the Ekman boundary layers. With that addition, the flux 
A(u.1,) no longer vanishes and the dominant geostrophic contribution U1, to the 
velocity is determined by (1.44, which yields 

pu = T(FB’1t/I1Q x l r l ) ,  ( 1 . 5 ~ )  

where the parameter 

T = ~ A { f [ IlQ.l,+ 1-1/2 + Ila.1,- I -1/2] dl}-l 
(Qv)”2 C ( H )  

(1.5b) 

has the dimensions of time (see, for example, Roberts & Soward 1992, equation (6.12)). 
Our objective is to show how topographic effects can dramatically influence thermal 

convection and produce the locking previously predicted by Zhang & Gubbins (1992, 
1993) for thermal inhomogeneities. To this end we adopt Busse’s (1970) simplified 
annulus model, which we describe relative to cylindrical polar coordinates (s, 4, z ) ,  
where z measures distance parallel to the 52 rotation axis. His idea was that the 
almost z-independent quasi-geostrophic motion, which is localized at mid-latitudes 
close to some geostrophic cylinder s = so, is largely driven by the radial s-component 
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of gravity normal to the rotation axis. Accordingly, the model assumptions are that 
both gravity g and the temperature gradient f l T  have these characteristics : 

g := -gls,  f l ~  : = - P T l s .  (1.6a, b)  

Furthermore, since the radial s-length scale is undefined by low-order theory, it is 
imposed artificially by the the introduction of boundaries at s = so & D, where the 
radial length D is small compared to the core radius. The natural modified Rayleigh 
number for the system is 

where ctT is the coefficient of expansion and K is the thermal diffusivity. The key 
additional feature of the model is the slanting top and bottom boundaries of the core, 
here assumed to be located symmetrically at 

Ra := a ~ f l ~ g D ~ / 2 l C a ,  (1.7) 

Z+ := +(H - y h ) ,  (1.8) 

where yh measures small departures from the constant half-height H .  Busse (1970) 
simply adopted a constant slope dh/ds = 1, from which we can define the small slope 
parameter 

(Ewen & Soward 1994), and in turn the renormalized Rayleigh number 
S := ( D / H ) y ( <  1) (1.9) 

9 := Ra/S a ~ f l ~ g D H / 2 y K a ,  (1.10) 

which we find more appropriate in our subsequent analysis. The annulus has proved 
to be a very useful model, from which a relatively simple understanding of the 
complex processes in rotating convection can be understood, and it is adopted in 
many of the theoretical investigations listed in the references. Note also that the 
radial gravitational field (1.6~) is mimicked in the experimental configuration of 
Carrigan & Busse (1983). 

Curvature of the CMB was incorporated in the studies of Busse & Hood (1982), 
Busse & Or (1986), Or & Busse (1987). Here, instead, we consider non-axisymmetrk 
bumps on the CMB. For simplicity, we consider the sinusoidal corrugation 

h := ( s  - SO) + ( y / k )  sin kso4, (1.lla) 

in which y is a constant. The crests, of half-height HbUmp, are radial and separated by 
a distance 2DbUmp : 

Hbump = ? y / k  Dburnp = n / k -  (1.1 1 b,c) 

In the absence of bumps, y = 0, the geostrophic contours h =constant are circles. On 
the other hand, when y # 0 that is no longer the case and the geostrophic cylinders 
have outward unit normal 

1, := Vh/lVhl (Vh (1, ~coskso4,0)), (1.lld) 

showing that y measures the tilt of the geostrophic contours. Throughout this paper 
we will only consider small bumps, in the sense that the geostrophic contours are 
only slightly distorted 

which undulate over a distance comparable to the radial scale (kD = O(1)). At the 
outer edge of the Ekman boundary layers the relative size of the vertical motion 
produced by Ekman suction and the slanting boundary is characterized by the small 

Y -=c 1, (1.12) 
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parameter E 1/2/q. Our asymptotic analysis shows that topography has an important 
effect when the geostrophic contour tilt y is of order ( E  1/*/q)1/2. Accordingly, the key 
dimensionless parameter measuring bump size in our theory is 

( 1 . 1 3 ~ )  r := E -  114 y~ 1/2 7, 

which will be assumed of order unity or more precisely 

r2  = O(kD)  ( 1.13b) 

(but see (1.14) below). It should be stressed that the quasi-geostrophic approximation 
made throughout this paper depends on the small size of the slope parameter S (see 
(1.9)) and not on q. 

The paper is organized as follows. In $2 the equations governing the topographic 
convection are derived. For our new geostrophic modes of convection, motion is 
separated into two parts. The larger is geostrophic (steady/possibly oscillatory) or 
quasi-geostrophic (travelling wave, modulated on a long azimuthal length scale) ; the 
smaller is ageostrophic (periodic on the bump length scale). The heat convected 
by these flows leads to the buoyancy forces necessary to drive them; the governing 
equations are Taylor’s condition (2.12), the axial vorticity equations (2.14) and (2.16), 
and the heat conduction equation (2.17). The stability of the static state is investigated 
in $3. For sufficiently large bumps, instability first sets in as steady convection. For 
smaller bumps, oscillatory convection is possible, though a propagating modulated 
mode is preferred. These low-frequency travelling waves should not be confused 
with the traditional thermal Rossby mode of convection which has the very short 
E l l 3  azimuthal length scale. The existence of the new geostrophic modes relies 
on the presence of the bumps. Like thermal Rossby waves, however, convection 
prefers to adopt the longest radial length scale available. In that long-length-scale 
limit, we determine in $4.1 finite-amplitude states consisting of a uniform geostrophic 
flow, which is self-maintained by the buoyancy force induced by the temperature 
distribution that it convects. This has some resemblance to the mean flow instability 
considered by Or & Busse (1987), Schnaubelt & Busse (1990), which rides on thermal 
Rossby waves. The validity of the results when the radial length scale is finite is 
discussed in $4.2. The stability of the uniform geostrophic flow to unmodulated 
disturbances is tested in v.3. The case of modulated disturbances is investigated 
in $5. These uniform finite-amplitude states always come in pairs. The small- 
amplitude solution has a domain of stability, but when lost the solution jumps to the 
large-amplitude state, which is generally more robust. It is characterized by a negative 
geostrophic flow, which corresponds to a Westward motion in the geophysical context. 
This large-amplitude state is eventually unstable to modulated travelling waves, whose 
finite-amplitude disturbance is investigated numerically in $6. Despite the wave’s 
complex character, the dominant qualitative feature of systematic westward motion is 
preserved. Some concluding remarks are added in 47. Many of the results presented 
here have their roots in Bell’s (1993) PhD thesis. Before we proceed, however, some 
remarks about units and applicability to the geophysical problem are appropriate. 

To maintain consistency with earlier studies, we non-dimensionalize on some pre- 
scribed radial length scale D.  On the other hand, the bump half-wavelength Dbump(= 

n / k )  is the only relevant length in the long-radial-length-scale limit D >> Dbump. That 
is why the combinations 

- =  9 H a T B T g  ( 1.14a,b) 
kD 2qkuR ’ 
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which are independent of D, emerge as the most important dimensionless parameters 
of our theory. For example, they are the coordinates employed on figures 1 and 2, 
which illustrate various stability boundaries. In the same spirit, it is often convenient 
to rescaie our variables by amounts which recognize the importance of the bump 
length scale (see particularly ( 3 . 4 ~ 4  below). Indeed, we could define define D to 
be Dbump/n; then with kD = 1, much of the rescaling is superfluous. We avoid this 
condensation of notation so that we can keep track of the role of the bump length 
scale in our equations by its explicit appearance as k-’. To help clarify the notation 
and its usage, a summary of the important parameters and variables is provided in 
Appendix C. Note, however, that the superscript * introduced briefly at the beginning 
of 52 to distinguish dimensionless quantities is dropped there as elsewhere in the paper. 

In application to the Earths core, q is indeed of order unity and so (1.9) and (1.13) 
require 

D << If, y2 = O(E’12kD) when q = O(1). ( 1.1 5a, b) 

Use of (1.11) shows that the value of the the key parameter T 2 / k D  (see ( 1 . 1 4 ~ ) )  on 
the CMB is 

( 1 . 1 6 ~ )  

where KO,., = 3.5 x 103km is the core radius and the core Ekman number is 
v/(QRZOre) = for kinematic values of the viscosity. For moderate size un- 
dulations on the CMB of order l i b u m p  = 1 km height extending over distances of 
order Dbump = lo3 km, we obtain upon setting q = 1 the value 

(g) C M B  = 30. (1.16b) 

According to our result ( 3 . Q  the steady geostrophic mode sets in when T 2 / k D  exceeds 
2, a limitation which is easily met by (1.16b). For smaller values, the geostrophic 
mode oscillates and %/kD is of order k D / T 2  (see (3.7)). This only gives way to the 
thermal Rossby mode, for which %/kD is large of order E-l13, at extremely small 
values of T 2 / k D .  Of course, for larger bump heights and/or shorter bump diameters, 
the parameter (T2/kD)CMB may become very large and asymptotic results for r 1 co 
are then appropriate. 

In the case of the spatially modulated modes, the azimuthal (4) modulation 
half-wavelength Dmodulation cannot be too long and is clearly limited by the half- 
circumference of the core! Furthermore, the bumps need to be on a fairly short 
length scale (say Dbump = 10 to lo2 km) in order to achieve scale separation. For the 
modes considered here with radial (s) half-wavelength 2 0 ,  corresponding to p = i n  
(see (3.2a)), the parameter d defined by (3.3b) (see also Appendix C) is generally of 
order unity for the most readily excited modes. For such modes we obtain 

(d = w) ( 1 . 1 6 ~ )  

and so the condition Dmodulation d nKOre imposes a severe restriction on D because of 
the small size of the Ekman number. The nature of the difficulty can be identified 
from (2.14) for, as the radial length scale increases, the Ekman suction and buoyancy 
torques decrease in concert leaving the unbalanced topographic term 2r 2dp/dc.  Since 
this term is not dissipative, it could, on these longer length scales, be balanced by 
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the inertia term dropped in (2.14). This is the usual Rossby wave balance; it leaves 
the crucial balance between viscous dissipation and buoyancy forces mentioned to 
the next order of approximation. Accordingly, we may expect modulated modes 
of instability to occur in the Earth's core but, since their azimuthal length scale is 
necessarily shorter than the optimal scale of our theory, the corresponding critical 
Rayleigh numbers will accordingly be larger. On the other hand, in a laboratory 
system with a moderately small Ekman number of order say the conditions 
of our theory are easily met by an annulus with sufficiently small tilt r ] .  One final 
point: our small Ekman number asymptotics leads to the neglect of viscous effects 
in the interior of the flow, leaving them only in the Ekman boundary layers. This 
distinction actually imposes tight restrictions on various length scales. The qualitative 
features of our results are not sensitive to this distinction (but see further remarks in 
92 connected with Bell's (1993) thesis). 

The main thrust of the present study is to emphasize the possible importance of the 
interesting steady geostrophic mode of convection locked solidly to the topography. 
Our secondary objective is to explore the possible modulated variants with their 
Rossby wave links. The importance of such modes is highlighted by the results of 
93, where this type of instability of the static state is shown to set in when T 2 / k D  
is less than 4/J3. Of course, in the spherical shell or cavity, the modulated modes 
will not be as potent as the present theory suggests, because of the limitation on the 
azimuthal length scale. 

2. The governing equations 
The customary approximations of Busse's annulus are employed. Note, however, 

that it is usually argued that r ]  is small; as we remarked below (1.13), that is 
unnecessary provided that the slope parameter S (see (1.9)) is small. The derivation 
of our governing equations, relies on expansions in terms of the small geostrophic 
tilt parameter y (see (1.12)). The actual ordering adopted in (2.2), (2.11), (2.15) is 
subtle but appropriate to obtain the correct balances in the governing equations for 
the geostrophic convective modes. In Bell's (1993) original study, he undertook a 
complete harmonic analysis of the vorticity equation (2.7) without the Ekman suction 
term - i(E1/2/r])Viy as appropriate to stress-free boundary conditions. His initial 
numerical study at small but finite Ekman number E revealed the existence of the 
new modes. Subsequently, he developed an asymptotic theory valid as E -1 0, which 
agreed with his numerical results for small values of E .  Of course, other modes exist, 
for example thermal Rossby waves, which have different orderings; our choice selects 
those with the smallest critical Rayleigh number for sufficiently large bumps. 

Since the horizontal length scale D is small compared to the cylinder radius S O ,  we 
introduce local rectangular Cartesian coordinates (x*, y', 2') non-dimensionalized on 
the length D :  

s - SO := Dx*, S+ := Dy', z := Dz' ( h  := Dh'). (2.1 a-c) 

Our unit of time D2/t i  is based on thermal diffusion: 

t := (D2/ti) t*.  (2.14 

Accordingly, the fluid velocity u and temperature T (  := TO - P T ( S  - S O )  + T' )  are 
rendered dimensionless by the following change of variables : 

u := (t i /D)u' ,  T := T~ + DPT(-x' + y e * ) .  (2.2a,b) 
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F B  = paTPTgDy6'1,. . (2.3) 
Correct to order y the unit outward normals to the top and bottom boundaries are 

I,, = ( v ,  r y  cos k'y', +I) (k' := kD) ,  (2.4a) 

while the tangent vector to the geostrophic cylinder is 

1, = (-y cos k'y', 1,O). (2.4b) 

Our choice of scaling of u and T is such that the geostrophic contribution U ' l ,  
determined by (1.5) satisfies 

u = - 2 & ? r 2 ( e c o s k y ) ,  (2.5) 

where here and below the superscript * labelling dimensionless variables is dropped. 
From a more general point of view, we may begin with the quasi-geostrophic flow 

u := v x yl,. (2.6) 

Under the assumption that y is z-independent, the z-average of the axial vorticity 
equation yields 

In the absence of bumps, the onset of instability is characterized by thermal Rossby 
waves which occur on the short width D(JT/S) ' /~  of Munk (1950) shear layers (having 
some similarity to E l l 3  Stewartson (1957) layers). In this case, the (topographic) 
Rossby wave is driven by buoyancy forces and damped by viscous forces in the 
interior of the flow. The corresponding Rayleigh number 92 is of order In the 
presence of bumps a second mode exists, for which convection occurs on the bump 
length scale D / k  or simply D (k  is assumed to be of order unity) and oscillates on the 
thermal diffusion time scale D'/K.  More precisely, motion is aligned predominantly 
with the geostrophic contours and so we refer to it as the geostrophic mode. The 
corresponding critical Rayleigh number is of order r-*. Clearly for the order-unity 
values of r considered here, the onset of instability is characterized by the geostrophic 
mode. 

In view of the characteristics of the geostrophic mode just described, we neglect 
all the terms in (2.7) proportional to E .  More precisely, we ignore inertia because 
the diffusion time D'/K is long compared to the Rossby wave time scale (Sl2-l so 
placing a lower limit, albeit very small, on the size of the Prandtl number V / K .  In 
addition, we ignore viscous effects in the interior and retain only Ekman damping 
described by the term proportional to E1/2/q [= ( Y / T ) ~ ]  in (2.7). This approximation 
is justified if the bump length scale D of the convection is large compared to the 
Stewartson (1957) shear layer width H1/2(v/s2)'/4. Indeed the vortex line stretching 
balance due to Ekman suction and topography, described by the remaining terms on 
the left-hand side of (2.7), is well known in oceanography and occurs in Stommel 
(1948) layers in western boundary layer coastal currents. Indeed Pedlosky (1979, 
p. 286) in his equation (5.5.29) neatly summarizes the balances appropriate to Monk, 
Ell4 Stewartson (frictional sublayer) and Stommel layers. Furthermore, the oceanic 
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link is even tighter, if we link our averaged buoyancy force on the right-hand side of 
(2.7) with the surface wind stresses of the oceanic models. 

It is worth emphasizing the neglect of interior viscous effects. Though the approx- 
imation is common in rotating magnetoconvection, viscous friction in the interior 
provides a vital force balance for thermal Rossby waves. Indeed Bell's (1993) results 
were based on that balance and Ekman suction effects were ignored. As we have just 
explained, that approximation is only valid when the bump scale is smaller than the 

Stewartson layer length scale, but that is not the case in our model. Nevertheless, 
despite the differences, the qualitative features of the two sets of results are very similar. 

Only in the heat conduction equation do we retain nonlinear terms and under our 
non-dimensionalization it reduces to 

In order to distinguish carefully between geostrophic and ageostrophic flow, it is 

(2.9~) 

helpful to replace the radial coordinate x with the geostrophic coordinate 

h := x + ( y / k )  sin ky 

(see (1.lla) and (2.1)), for which correct to order y we have 

1, = Vh, 1, = 1, x 1,. (2.9b,c) 

Consequently, when the streamfunction tp(= v) depends on h alone, the resulting 
motion is geostrophic and 

u = -aip/ah. (2.10) 
Since this motion has a radial component, it distorts the isotherms. In the absence of 
thermal diffusion, the isotherms would coincide with the geostrophic contours, so, like 
U ,  the temperature would be a function of h. With the inclusion of diffusion, however, 
the dominant contribution to the temperature perturbations fluctuates on the period 
of the bumps. In fact we find that the appropriate expansion of the temperature for 
the most unstable preferred modes is 

e := ye+ (ife'y + O"'e-'y) + 0(y2) ,  (2.11) 

where e and $ are complex functions of h alone. Here and below the superscript * 
is used to denote complex conjugate. Substituting (2.11) into Taylor's condition (2.5) 
yields 

Though (2.11) only contains one harmonic in the azimuthal y-direction, the complete 
linear solution contains all harmonics proportional to exp(inky) for integer n. So our 
additional approximations based on the small size of y are crucial. 

In addition to steady modes, we will also consider travelling topographic waves. 
These are not perturbations of the short-azimuthal-wavelength thermal Rossby waves 
occurring in the absence of bumps. Rather they are long-wavelength modes whose 
structure continues to be defined by (2.11) but with coefficients dependent on time 
t and 

[ :=y2y (2.13) 
in addition to h. In other words, the amplitudes are now modulated on the long 
dimensionless length Y - ~ .  Since ip depends on [, the motion it defines is not strictly 

u = -L4?P(if+ 2 2) .  (2.12) 
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geostrophic. Accordingly, we may no longer use Taylor's condition (2.5) but must use 
(2.7) instead. Correct to lowest order in y it gives 

(2.14) 

for the mean terms independent of y. Of course, it is the presence at this order of the 
term 2r2aijT/ai describing motion across the geostrophic contours which motivated 
the introduction of the stretched y-variable (. On the other hand, when there is no 
dependence on 5 and this term vanishes we can integrate (2.14) with respect to h and 
recover (2.12) up to an arbitrary constant. The vanishing of that constant cannot 
be inferred from the axial vorticity equation, but instead depends on averaging the 
equation of motion following Taylor's recipe. 

Of course, the fluctuating temperature perturbation leads to buoyancy forces, which 
directly drive fluctuating ageostrophic flow. In fact the complete representation for 
the streamfunction is 

y := v+ 1 2 y  (-e'kY w + W*e-'ky ) + 0 ( y 2 ) .  (2.15) 

Upon substitution into the vorticity equation (2.7), the fluctuating terms proportional 
to exp(fiky) yield the primary order-one torque balance 

- 
= -Be, (2.16) 

a result which motivated our choice of scaling for the fluctuating streamfunction. 
This simple balance has its analogue in the oceanic context mentioned below (2.7) 
provided that we identify our buoyancy forces with wind stresses. In that context 
it is known as the Sverdrup (1947) relation (see Pedlosky, 1979, p. 264, particularly 
equation (5.3.2)). For us, it describes part of the usual balance invoked for thermal 
Rossby waves, namely that between the topographic effects and buoyancy torques. 
There, however, inertia and interior viscous effects play a significant role as well 
(motivating Bell's 1993 original choice), while in our case viscous effects are only 
manifest through Ekman suction in boundary layers. Perhaps it should be stressed 
that the balance in (2.14) is delicate in the sense that it arises from the secondary 
torque balance of order y. 

Upon substitution of (2.11) and (2.15) into the heat conduction equation (2.8), the 
leading-order-one balance, which ignores all terms proportional to y and smaller, is 

- ae 
at 
- + ikU8 = ikijj - U + (& - k 2 )  8. (2.17) 

A significant feature is the convection of the fluctuating temperature by the geostrophic 
velocity described by ikU8, which is the only nonlinear term retained in our theory. 
The radial convection of the original applied temperature gradient is brought about 
by both the fluctuating ageostrophic and mean geostrophic velocities as indicated by 
the term ik@ - U. 

Though knowledge of the perturbation ye to the mean temperature is not needed 
in our theory, we give the equation governing it for completeness. It comes from the 
mean terms of the heat conduction equation (2.8) which at leading order y give 

aip a2i7 ai7 a 
- + - [ , l k ( w e * - @ ' e ) + x ]  =-+-  
at dh a y  ah23 

- - 
(2 .18~)  
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(2.18b) 

Note that in view of the result (2.16), the nonlinear heat flux iik(@ @ -@*e") vanishes 
leaving only the linear term H. For the spatially periodic solutions of our system, 
the mean heat flux (Z)  provides a measure of the amplitude of our solutions. 

The boundary conditions on our system need to be considered carefully. In the 
azimuthal y(()-direction it is natural to assume spatial periodicity due to the absence 
of boundaries. In the radial direction the issue is more subtle. The boundaries at 
x = k1 are not real and only invoked to define a radial length scale. For simplicity, 
therefore, we assume spatial periodicity in the radial direction also. Evidently, for the 
geophysical system, we anticipate that this periodicity is modulated radially in order 
to localize the solution. Still, in order to understand key processes introduced by the 
presence of bumps, we believe that our spatially periodic boundary conditions are 
adequate. 

3. Stability of the static state 

The most general form of perturbation to the static state has the form 
3.1. The dispersion relation 

- h h 

8 := ((j+eiq + 8' - e-iq)eqt, 
u := $(fjek + fj*e-iV)eqt, 

(3 .1~)  

(3.lb) 

where 

~p := ( p h  + a() - a t  ph  + a(( - ct) (c  := w/a) .  (3 .2~)  
Here the wavenumber p is fixed by the length scale in the radial direction, the stretched 
wavenumber a characterizes the slow modulation in the y-direction propagating at 
the phase velocity c (frequency o), while 

p := q - i o  (cg := idplda) (3.2b) 

is the complex growth rate (group velocity). Upon substitution into (2.14) and making 
use of (2.10), we obtain the relation 

(3.3a,b) 
h 

(1 + i d ) u  = --;9r2(i?+ + g-1, d := 2(r / P ) ~ u .  

In addition, (2.16) and (2.17) yield 
h 

( k 2 9  f ikB)& = -u, 9 :=!Z?-iF, (3.4a,b) 

where 

2' := (4 + p2 + k2)/k2, .% := o/k2 .  (3.4c,d) 
Substitution of the result into (3 .3~)  leads to the dispersion relation 

(3.5) 

All points on figures 1 and 2, which illustrate our results, will be identified by their 
coordinates (I' 2 / k ,  B/k). 
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r21k 
FIGURE 1. The stability boundary q = 0 in the (r2/k,W/k)-plane for the static state (% = 0) indicated 
by the continuous line OAD. Stationary convection occurs on the A = 1 curve (appropriate to the 
fl  = 0 case and adopted for consistency with figure 2), which passes through the points B, A and D. 
Neutral unmodulated (a  = 0) oscillatory (w # 0) convection occurs on the curve CB. The frequency 
vanishes (w = 0) at B, where there is a Takens-Bogdanov bifurcation. The curve OA is the envelope 
of the corresponding modulated (a # 0) oscillatory modes. The bifurcation on OA is a Hopf one 
and on AD a pitchfork. 

3.2. Unmodulated disturbances OL = 0 
When there is no spatial modulation in the azimuthal direction, CI (and d) vanishes. 
Then (3.5) reduces to 

k 2 P 2  - 9 r 2 P  + W2 = 0. (3.6) 
Oscillatory solutions (o # 0) only occur when r 2  c 2k. Overstability occurs when 

2(p2 + k 2 )  r2  
k 9  k 

6 - < 2 .  (3.7) 

The overstability boundary 9r2 = 2(p2 + k2) ,  illustrated by the broken curve 
CB on figure 1, terminates at B (2 , ( /? /k)2  + l), where the frequency vanishes 
(o = 0) and a direct mode of instability sets in. Since 9 increases with p, the 
minimum (over p) occurs at p = 0. When the geometry permits, however, the 
modulated waves discussed in 53.3 below are the preferred mode of instability. 
Nevertheless, in the geophysical application, the long azimuthal length scale nec- 
essary for the modulations might not exist. Then all that can be inferred is that 
the critical Rayleigh number lies between the two stability boundaries OA and 
CB. 

Stationary convection ( p  = 0) occurs when r = r s (W) ,  where 

- _  r: - (p2 + k2)2 + k 2 g 2  
k (p2  + k 2 ) k 9  

( 3 . 8 ~ )  

For the special case p = 0, this neutral curve is illustrated by the A = 1 curve on 
figure 1. When r 2  3 2k, its lower branch DAB provides the stability boundary to the 
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(3.8 b,c) 

From (3.4a) marginal convection everywhere on the neutral curve (0 < E < in) is 

(3.9) 

given by 

So, when 6 is real, the actual geostrophic velocity and temperature fluctuations 
are 

(3.10a,b) 

Accordingly, we see that the phase lag E increases from zero along the stability 
boundary as r2  decreases from infinity beyond D, where W r 2  = P2 + k2. It attains 
the value an at the minimum value of r2(= 2k), where it meets the overstability 
branch at B. It continues to increase up to the value in as W increases indefinitely 
along the upper branch of the neutral curve beyond B. It is perhaps worth noting 
that stability is not regained above this upper branch, where instead there are two 
unstable modes. 

A 

8+ = -( 6 / k W )  sin EeTis. 

U = Gcosph, 8 = -( 6 / k W )  sin E cos ph  cos(ky - E ) .  

3.3. Modulated disturbances a # 0 
The most unstable mode is found by locating that a, which maximizes the real part 
q of the complex growth rate p. The overstability boundary (the continuous curve 
OA on figure 1) is determined by the results of Appendix A with 9 = (fi/k)2 + 1, 
A = W/k, B = Wr2/k2, C = 0. A convenient parametric representation of this 
boundary is obtained by setting [(p/k)2 + 1]/A = tan26. In this way (A2a) yields the 
values 

:= 4tan6, - r,’ 
k 

__ := ~ cot26 
k k2 (0 < 6 < i7C) (3.1 la,b) 

8 0  P 2 + k 2  

for r 2 / k  and W/k. The corresponding values of the modulation wavenumber a, phase 
velocity c( := w / a )  and real group velocity cg(= dw/da; since dq/da = 0) determined 
from (A2b-e) are given by 

(3.11~) P2 a = -(2 cos 26 - 1)1’2, 
8k 

(> O), 
8’ + k2 

(&)c= k2( 1 - cos 26) 
p2 k2 (> 0). (3.11d,e) (&) cg = k2 cos 26 

Substitution of the results into (3.4) gives 

(3.12) 2 f i6  
h 

O+ - = -( 6/4kWsinS)[eTi6 k (8kcr/P )e 3 .  
Hence with 6 real, (3.1) and (2.11) give 

A u =260siniicoscp ( u O  := i 6/ sin 61, (3.13a) 

8 = -i( Go/kW) [cos cp cos(ky - 6) - (8kcr/p2) sin cp sin(ky + a)]. (3.13b) 

By taking the negative value of the square roots in (3.11~) a second solution is 
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obtained. It can be combined with (3.13) to give the guided wave 
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u = 260 sin 6 cos ph cos[a(i - ct)], 

0 = -~(Uo/kW)cosph{cos[a(i - ct)] cos(ky - 6) 

- (8ka/p2) sin[a(i - ct)] sin(ky + a)} 

(3 .14~)  
h 

(3.14b) 

travelling with positive phase velocity (c > 0). Like the steady solution (3.10) it 
vanishes on the lateral boundaries p h  = +in. 

The overstability boundary OA meets the steady neutral curve at A (4/J3, [(p/k2)+ 
11/43), when 6 = E = in. There the solutions (3.14) and (3.10) coincide (sin6 = 

sin& = 1,a 2 = 0). As 6 decreases from in at A to zero beyond 0, so does r ,  
while W increases to infinity. Note, however, that on this boundary we have Br2 = 
2(b2 + k2)( 1 - tan2 6) which is less than the value 2(p2 + k2) for the unmodulated 
oscillatory mode (see below (3.7)). That is why the modulated mode is preferred. 

4. Stationary convection on long radial length scales 
4.1. Finite-amplitude uniform states 

When there is no azimuthal spatial modulation the governing equations (2.12), (2.16), 
(2.17) reduce to 

where 
u = -9r 2e'r, 

( 4 . 1 ~ )  

(4.lb) 

(4 .1~)  

A* := (Br2 - k2)/B2, (4.2) 
and gr and gi are the real and imaginary parts of 6( := 6,. + i&). A generalized version 
of the earlier parametric representation (3.8) of r and B is given by (Cl) and (C2) 
of Appendix C. The particular special case useful here is 

2A .- -- r2 - 
k . sin2zA ' 

(4.3a, b) 

In the case of the marginal modes, considered in the previous section, the duct 
solutions (3.10) have the property that 

U = l y = O = O  on + 2 h = A = n / B .  (4.4) 

According to (3.8a), the most unstable modes occur in the wide-duct limit ( A  t 00 

p 4 0) for which the neutral curve (3.8b,c) is defined by A = 1. This linear result 
implies that convection attempts to occupy the longest available radial length scale. 

In the long-length-scale context, it is of interest to note that the system (4.1) admits 
two constant amplitude solutions 

(4.54 U = % := W ( A  - 1) 
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provided %T2 > k2. By analogy with (3.10b), they define the temperature distribution 

(4.6) 8 = -(%/kgA) sin E A  cos(ky - E ~ ) .  

According to (2.1%) it leads to the mean radial heat flux 

2 = %2/.%r2. 2 (4.7) 

So at each point in the (r*/k,&?/k)-plane to the right of the continuous A = 0 curve 
.%r2 = k2 illustrated on figure 2, (4.2) has two distinct solutions +lAl. The positive 
(negative) value (see figure 2a (figure 2b)) defines a small (large)-amplitude solution 
with positive (negative) phase lag En. According to (4.2), the curves A =constant shift 
to the left (right) as IAl decreases (increases). They are bounded on the left by the 
A = 0 curve on which the small- and large-amplitude solutions coincide. Rather than 
to refer to i-lAl-solutions, we will parameterize them individually by A in the entire 
range -co < A < co, while the specification is completed by the value of En in the 
range -in < < in. 

In view of (2.15), the temperature distribution (4.6) defines the small ageostrophic 
contribution 

y'--y=-y&?0 (4.8) 
to the streamfunction (the 'Sverdrup relation' (2.16)). Since it is independent of h, it 
defines a net inflow or outflow at each value of y, reminiscent of salt fingering found in 
thermohaline convection. Indeed, the stability calculations for modulated disturbances 
to our finite-amplitude state in $5 below are reminiscent of Holyer's (1981) analysis of 
the stability of salt fingers to long-length-scale internal wave perturbations. Clearly 
that net mass flux must eventually be returned, which is why we prefer when possible 
to apply the duct boundary conditions (4.4). Nevertheless, it is possible that, when 
A is large, (4.5) provides a valid approximation to the solution of (4.1) subject to 
(4.4) throughout a large part of the flow region, with the return flow being limited to 
boundary layer regions at the edges. We explore this possibility for small-amplitude 
solutions in the following subsection. 

4.2. Weakly nonlinear theory 
Taking into account the nature of the steady finite-amplitude solution (4.5), we make 
the preliminary change of variables 

x + i Y  := $10. (4.9) 

Accordingly the governing equations (4. la-c) become 

with 

[ $ - & ] X - k [ 2 . % A + ( U - % ) ] Y  =0, 

(&?'A2 - k2) Y + k( U - %)X = 0 1 
u =%(,+ Y Y ) .  

(4.10a) 

(4.10b) 

(4.10~) 

The finite-amplitude equilibrium (4.5) is simply ( X ,  Y )  = (1,O). 
We restrict attention to small-amplitude solutions close to critical 

[ A  - 11 << 1, WI << g, (4.11a.h) 
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I c 

T21k 
F’IGURE 2. The stability boundaries q = 0 (B  = 0) in the (r2/k,W/k)-plane for finite-amplitude 
geostrophic flow (% # 0), which exists when W r z  >, k2. Equality defines the boundary of this 
region indicated by the continuous A = 0 curve on which Q = -9. It is also a stability boundary. 
(a) The case A > 0 for which % > -9. This state is unstable everywhere except within the tongue 
bounded by the continuous curve OPAD. The curves CB, OA, AD have the same significance as in 
figure 1. ( b )  The case A < 0 for which % < -9. Instability sets in as a Hopf bifurcation across the 
continuous curve 10. It is bounded on its left by the broken curve A = -8. 

which vary on slow time and long length scales. In this limit, we have IY I << 1x1 with 
(4.10) reducing to 

[k - & ] X  = 2kWY, 

( 9 2  - k*)  Y = k@( 1 - X)X, [;-& 1 u = @X. 

( 4 . 1 2 ~ )  

(4.12b,c) 

Provided that W is not close to k (equivalently E,, is not close to in), we may neglect 
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the partial derivatives in (4.12b) and obtain 

x T (2K+)2( 1 - X)X = 0, (%) 
where 

(4 .13~)  

(4.13b) 

with the sign selected to ensure the reality of the appropriate K+ or K-. In fact, 
since $2 is positive (negative) on the right (left) of the stability boundary A = 1, K+ 
(K-)  is appropriate above (below) both the lower W < k and upper W > k stability 
boundaries (illustrated by DAB and beyond B on figure 2a) respectively. 

Steady solutions of (4.13) can be constructed in terms of Jacobian Elliptic functions. 
Consider, for example, the finite-amplitude solution U = $2 just above the lower 
stability boundary DAB, where K+ is applicable; it can be terminated by the boundary 
layer 

U = !$2[-1 + 3 tanh2(K+h)] (4.14) 
relative to a suitably chosen h-origin. It is also clear by inspection of (4.13) that 
the constant finite-amplitude state is stable to small perturbations. On the other 
hand, the finite-amplitude solution which occurs below the lower stability boundary 
DAB, where K- is applicable, cannot be terminated by a boundary layer. Again by 
inspection this state is unstable. 

The above weakly nonlinear results are applicable when the duct width is large 
compared with the boundary layer width which, in turn, must be large compared 
with the bump width: 

kA >>&A >> 1. (4.15) 
The results imply that not all finite-amplitude states can be terminated by boundary 
layers. They do, however, suggest that their existence is closely linked to the temporal 
stability. This observation must be interpreted cautiously as the amplitude modulation 
equations (4.13) are of lower order than the complete system (4.10). 

4.3 Temporal stability 

To test the stability of the uniform state (4.5), we simply consider perturbations pro- 
portional to exp(pt). Upon substitution into (4.1), or equivalently (4. lo), linearization 
yields the quadratic dispersion relation 

p 2  + (k2 - W2A)p  + 2k2W2A(A - 1)  = 0 (4.16~)  

for p .  The roots are complex when and only when A satisfies 

+ < (B[ 1 + (32])1’2 (Imp # 0). (4.16b) 

When 0 < A < 1, condition (4.16b) is not met, the product of the roots is negative, 
both are real and one is positive. At A = 0 and 1, one root vanishes, but importantly 
both roots vanish at the Takens-Bogdanov point B (2,1), where A = (k/W)2 = 1 
(cA = :n). Outside the range 0 < A < 1, the product of the roots is positive, either 
both roots form a complex conjugate pair or are real with the same sign (depending 
on whether or not (4.16b) is satisfied); when A > (<)(k/W)2, the sum of the roots is 
positive (negative) and both have positive (negative) real part; when A = (k/&?)2, the 
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sum of the roots vanishes and p is purely imaginary, tending to zero as A decreases 
to unity at the Takens-Bogdanov point B. 

Close to the stability boundary A = 1 of the static state but away from the Takens- 
Bogdanov point B, where 9 = k ,  the assumptions (4.11) and (4.15) imply that the 
two real roots of (4 .16~)  are 

T(2&)2@ + O(@’), 

-1 + ( 9 / k ) ’  + O(@). 
;={ (4.17a,b) 

The former small-p case (4.17a), obtained by neglecting p2  in (4.16a), corresponds to 
the slow temporal evolution of small X - 1 as governed by (4.13) and discussed in the 
previous subsection. The latter relatively large-p case (4.17b), obtained by neglecting 
the term proportional to A - 1 in (4.16a), defines another direct mode which is stable 
(unstable) when &? < (> )k .  

When W < k ,  the small finite-amplitude state 0 < A < 1, which bifurcates subcrit- 
ically from the lower branch of the stability boundary DAB, is unstable. This direct 
mode of instability ( p  real) switches on at A = 1 (4 .17~)  and off at A = 0 (see figure 
2a). The supercritical bifurcation from the lower boundary DAB, on the other hand, 
is stable over the range 1 < A d ( k / 9 ) 2 ,  specifically 

(4.18) 

Overstability sets in ( p  imaginary) at the stability boundary A = ( k / 9 ) 2  (illustrated 
by the broken curve BPC) and persists (Rep > 0) for all larger values A > (k/&?)2. 

When W > k ,  the bifurcation from the upper branch of the neutral curve (the 
broken curve beyond B) is unstable for all positive values of A ;  the range of stability 
defined by (4.18) no longer exists. 

From a general point of view, the bifurcation from the neutral curve A = 1 is best 
understood by considering (4.10) with the spatial derivatives omitted. Evidently, there 
is a Takens-Bogdanov bifurcation at B, where &? = k ,  A = 1. Our further reduction 
to (4.12) is appropriate for unfolding that bifurcation (but see, Guckenheimer & 
Holmes, p. 365). From these general considerations, we see that, following the Hopf 
bifurcation on BPC, a stable limit cycle emerges. That eventually loses stability via a 
global bifurcation which occurs when the limit cycle becomes the homoclinic trajectory 
of infinite period through the unstable zero-amplitude equilibrium. Subsequently, all 
solutions converge on the large-amplitude equilibrium states. 

When A < 0, the corresponding large-amplitude states are stable, Rep ,< 0, for all 
values of W. Indeed, we may speculate that this is generally the preferred equilibrium 
state and it is characterized by a negative value of the geostrophic velocity 

@ < -9. (4.19) 

5. Modular stability of the uniform finite amplitude states 
5.1. The dispersion relation 

When the finite-amplitude uniform states (4.5) can be supported over a substantial 
radial distance, it is of interest to investigate their stability to additional perturbations 
g- 0 and U - @ of the form ( 3 . 1 ~ )  and (3.lb) respectively. The linear equations 
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(2.10) and (2.14) yield (3.3) as before, while linearization of (2.16) and (2.17) yields 

( k 2 9  rf: ik9A)& = - ( 1 -  kOi k ikO,)6 (5.1) 

in place of (3.4a). Together (3.3) and (5.1) lead to the quadratic dispersion relation 

9 + iA(9/k) -k 9 - iA(9/k) 
1 + i d =  (F) (  9r2 1 - kOi + ikO, 1 - kOi - ikO, 

for 9 as functions of r2 /k ,  9 / k  and d. 
As in $3.2 we consider the most unstable modes obtained by choosing d to 

maximize the growth rate q for some frequency w with the other parameters fixed. 
By inspection of (5.2), the choice of the coefficients in Appendix A is A = A(9/k), 
B = A(9 /k )2  + 1, C / A  = ( -A  + l) /A. The subsequent analysis of the results is 
cumbersome and distracts from our main theme. We, therefore, relegate the details 
to Appendix B and simply extract the main results here. 

Of course, the fate of unmodulated disturbances (a (or d) = 0) can be understood 
within the framework of the dispersion relation (4.16~) with p replaced by p + p2 and 
does not involve the elaborate minimization just described. In that case the most 
unstable modes are of long length scale, p + 0. This continues to be the case for 
our modulated disturbances. It should be noted, however, that with d fixed a tends 
to zero in concert with p. It means that the azimuthal modulation length scale must 
increase with radial scale. Bearing this limitation in mind, attention is focused below 
on the marginal modes 

q = o  and p -0.  (5.3) 

We also argue in Appendix B that the neutral curve for our minimizing modes 
provides us with the stability boundary. 

There are two stability boundaries, one for positive ($2 > 0) and the other for 
negative (% < 0) geostrophic flows. They are determined remarkably simply by (B8), 
which yields 

2 sin2 
A =  

sin 2&A - + 
It leads immediately via (4.3) to the parametric representation 

2 tan 
- 

r2 _ -  
2 k sin 2&A - i ’ 

(5.4) 

(5.5a,b) 

of the stability boundaries in terms of the phase angle &A.  The corresponding mean 
geostrophic velocity and temperature fields, upon which the instability rides, are given 
by (4.5) which reduce to 

$2 ( 5  - cos 2&,4)2 (4 - cos 2 4 2  -IEA 

kO = e .  (5.6a,b) - -- 
k sin 2&A ’ 2 sin E A  

The frequency of the marginal modes are given by (B4), which using (B2) yields 

Their corresponding phase velocity and real (since dq/da = 0) group velocity deter- 
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mined by (B5) are 
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From these results we may determine the modulation wavenumber 

2(r @)*a = d := %/v. (5.74 

The appropriate ranges of EA are fixed by the obvious requirements that r2/k, W / k  
and F2 are all positive. The two distinct cases of positive and negative geostrophic 
flows are discussed in detail in the two subsections which follow. It is perhaps 
significant that the group velocity defined by ( 5 . 7 ~ )  is always positive. 

5.2. Positive geostrophicjows, 9 > 0 
We noted in $4.3 that, when 9 < k ,  the positive geostrophic flow 9(> 0), which sets in 
following the supercritical instability at A = 1, is stable to unmodulated disturbances 
on the range (4.18), namely 1 < A < ( k / 9 ) 2  (see figure 2a). A direct mode of 
instability sets in to the left of the curve BAD ( A  = l), while overstability sets in 
above the curve BPC ( A  = ( k / 9 ) 2 ) .  The lines intersect at the Takens-Bogdanov point 
B (2,l). The nature of the solutions on the line A = 1 is given by the results of $3.2 
for vanishing geostrophic flow, 42 = 0. 

Essentially, the results of Appendix B show that the domain of stability (4.18) is 
eroded when modulated disturbances are considered. Specifically, instability sets in 
once the stability boundary APO on figure 2(a), defined parametrically by (5.5) on 
the range 

(5.8) 
is crossed. It begins at A (4/J3,1/J3) ( ( e A , A )  = (in, 1)). As r2/k increases so does 
W / k  until it reaches a maximum at (:, : ) [ ( & A , A )  = (in, :)I. With further increase of 
r2/k, the value of 9 / k  decreases indefinitely. The boundary touches and is tangent to 
the unmodulated stability boundary BPC at P (4J3,1/J3) ( (EA,A)  = ($c,3)).  Finally 
it continues on to infinity beyond 0, where 

(1 d A < a), i n  < & A  < E n  5 

W r 2 / k 2  - 2(1 + J3)2 as ( E A , A )  + (&n,00) (5.9) 

in contrast to WRr2/k2 - 1 on A = 1 beyond D. 
On the stability boundary geostrophic flow and wave characteristics are as follows. 

At A the disturbance is degenerate in as much as both the frequency o and modulation 
wavenumber a vanish; yet the phase and group velocities c and cg are finite: 

(5.10) % / k  = 9 = d = 0, %' = Wg = 2 ( A  = 1). 

At P the modulation wavenumber again vanishes but the phase velocity is infinite: 

9 / k  =2/J3, % =2,  d =0, vg = 1 ( A  =3) .  (5.11) 

Beyond 0 we have the asymptotic results 

} (5.12) 
% / k  - (2 + J3), 9 - (1  + J3)3/2, d - -i(l + J3)'l2, 

%? - -2(1 + J3), Wg N 2(J3 - 1)/J3 ( A  t 00). 

The main point is that the phase velocity is positive (negative) on AP (PO) changing 
sign through infinity at P, while the group velocity is positive everywhere. 
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5.3. Negative geostrophic flows, %! < 0 
In $4.3 we noted that the negative large-amplitude geostrophic flows a, characterized 
by A < 0, were always stable to unmodulated disturbances. According to the results 
of Appendix B, however, instability to modulated disturbances sets in as the stability 
boundary I 0  on figure 2(b), defined parametrically by (5 .5 )  on the range 

(5.13) 

is crossed to the right. The condition A < -8 with (4.2) gives the crude lower bounds 

r 2  > 6 4 9  -k k2/9,  -%! > 9 9  (5.14) 

on the bump size r and the magnitude of the geostrophic flow for instability. The 
curve A = -8 is illustrated broken on figure 2(b). 

The stability boundary begins on the upper curve beyond I on figure 2(b), where 
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(-8 > A > -a), 5 - in < & A  < -En 

r2  N 64W as (en, A )  + (-p, 1 -8). (5.15) 

There the geostrophic velocity, frequency and modulation wavenumber tend to infin- 
ity, while the phase and group velocities remain finite: 

} (5.16) 
%!/k N -9W/k, 9 N 4J6W/k, d - -J6W/k, 

%? N -4, gg - 4/5 (a t a)* 
As EA increases, -A increases and W decreases in concert. Simultaneously, r decreases 
to a minimum above that predicted by (5.14) and again increases to infinity. The 

while the corresponding wave characteristics continue to be given by (5.12) but the 
geostrophic velocity changes sign: 

*/k N -(2 + J3) (9 5- 0). (5.17) 

The phase velocity c remains negative and the group velocity cg remains positive 
everywhere on the stability boundary 10. 

Curiously, our results show that, at fixed bump height, stability is regained at suffi- 
ciently large Rayleigh number. For that reason we have been careful in Appendix B to 
establish the coincidence of the neutral curve and the stability boundary. Presumably, 
the large geostrophic flows, associated with increasing W, are eventually responsible 
for the stabilization. It is nevertheless important to remember the limitations of the 
present theory in which many terms (particularly nonlinear) have been ignored and 
must eventually be important. We comment further on this matter in the concluding 
remarks of $7. 

lower curve beyond 0 is again given asymptotically by (5.9) as (en, A )  + 5 -a), 

6.  Travelling jets 
6.1. Wave trains 

Here we continue our investigation of the negative uniform geostrophic flows $2 
initiated in $5.3. Following the Hopf bifurcation across the stability boundary in 
the (f 2/k, W/k)-plane a new finite-amplitude state is achieved, which is sensitive to 
the boundary conditions chosen. For simplicity, we assume that the disturbance is 
localized on a length scale p-' small compared to the channel width A .  Far from the 
lateral boundaries, we may reasonably expect travelling wave solutions dependent 
only on the variable cp defined by ( 3 . 2 ~ )  to be preferred, which are independent of 
the remote boundary conditions. Of course, other types of solution are possible 
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controlled by the boundary conditions. Our objective here, however, is to construct 
the simplest possible finite-amplitude solution of permanent form. 

Under our simple wave assumption the vorticity equation (2.14) reduces to 

(6.la) 

while Taylor's condition (2.12) provides the boundary condition 

(u )  = -$ar*((ii) + (el.)), (6.lb) 

where, since wave train solutions are sought periodic in q over the 2z-interva1, the 
cylinder average (1.4b) reduces to the mean value 

1 "  (...) = -/ ... dq. 
271 -" 

If the fluctuating geostrophic flow is expressed in terms of a fluctuating streamfunction 

ay u-(u)=-p- 
%J 

( 6 . 3 ~ )  

then integration of ( 6 . 1 ~ )  subject to (6.lb) yields 

u + d p ~  =--;ar2(F+el.). (6.3b) 

The vorticity equation (6.1) is supplemented by the heat conduction equation (2.17), 
which becomes 

Note that k can be scaled out of the governing equations and we take advantage of 
this property in our discussion of the numerical solution in the subsections below. 

The energetics of the system (6.1) and (6.4) helps us to understand the nature of 
their solution. Upon averaging the product of (6.la) and Y, we obtain with (6.4) the 
energy balance 

gv = W = g K ,  (6.5a) 
where 

It says that the viscous dissipation BV in the Ekman layers balances the rate of 
working of the buoyancy force W which equals the the thermal dissipation gK. 

6.2. Numerical solution 
Periodic solutions of (6.1) and (6.4) were found numerically using a Fourier series 
representation. Essentially, the linearized marginal solutions existing on the stability 
boundary were extended to their finite-amplitude states located in the region of 
instability. Some care is needed in the choice of modulation wavenumber a. In 
the marginal case it is selected by our earlier linear theory to maximize the growth 
rate. Then, if r is increased with a and W fixed, the nature of the finite-amplitude 
propagating wave evolves and its frequency o changes. Nevertheless, eventually at 
some second critical value of r the wave evaporates. This simply means that, for 



The influence of surface topography on rotating convection 169 

larger values of r ,  modes with the prescribed a and W decay. Nevertheless, at this 
point in the (r2/k,W/k)-plane the system is unstable to modes with different a. 

To avoid this difficulty, we selected a/k to take roughly the value that maximized 
the linear growth rate, rather than fixing it arbitrarily to take a value appropriate 
to some point on the stability boundary. Of course, this recipe does not necessarily 
select the preferred mode nor for that matter guarantee stability of the mode selected 
to other forms of disturbance. Nevertheless it does ensure that, as we increase r2/k 
at fixed B/k,  a finite-amplitude solution is located. During this increase we find that 
the geostrophic velocity profile sharpens up into a jet-like structure. This is illustrated 
in figure 3(a) for the case 

(6.6) r /k1I2 = 192.3.. . 

with 

W/k = 1.377.. . ( A  = -163.9.. .), (6.7a) 

P/k = 1.0, a/k = O.oooO7541.. . (d = 5.577.. .). (6.7b) 

For this set of values the resulting frequency is given by 

o /k2  = 9 = -164.9.. . . (6 .7~)  

Given r 2 / k  and W/k the mechanism for determining the maximum linear growth rate 
is explained in the paragraph below (B5) in Appendix B. The value of d obtained in 
this way differs slightly from the value chosen in (6.7b). Since there is nothing special 
about the solution with the maximal linear properties in the nonlinear regime, there 
is no reason to suppose that the nonlinear solution for maximizing d is qualitatively 
different to that for our actual choice. 

The numerically calculated mean values 

(U)/k = -107.1.. . , 9" =< U 2  > /(Wr2) = 1.0038 ..., (6.8a) 

k(&) = 0.002103.. . , k(&) = 1.0009..., ( X )  = 0.5019.. . (6.8b) 

for our solution may be compared with 

%/k = -227.0.. . , %2/(ar2) = 1.0122.. . , ( 6 . 8 ~ )  

kO, = 0.00459.. . , kOi = 1.006.. . , X = 0.5061.. . (6.84 

for the undisturbed uniform state upon which the wave rides. Our numerical evidence 
at other parameter values suggests that the geostrophic jet illustrated on figure 3(a) 
continues to exist with indefinite increase of r and is typical for large-amplitude 
solutions. On figure 3(b) we plot the real and imaginary parts of k($- (g)) together 
with the scaled streamfunction - ( d k p / W r  2)Y (= k& +k U / W r  2, for the geostrophic 
flow. To simplify the notation the vertical axes in figures 3(a) and 3(b) have been 
plotted with k = 1 but, of course, under the scalings introduced here those results 
renormalize to all values of k. 

It is of interest to compare our results with an asymptotic analysis based on large 
r (see (6.6)), or more precisely 

r /k ' I2  >> 1, (6.9) 
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FIGURE 3. The large-amplitude wave train solution characterized by the data (6.6), (6.7) with k = 1. 
(a )  The geostrophic velocity U plotted versus cp. Its mean value (U) is shown by the broken line. 
The corresponding tranverse velocity is proportional to U - ( U ) .  (b )  The fluctuating temperature 

$- (K) plotted versus cp. The real and imaginary parts are distinguished by the continuous and 

evenly broken lines respectively. The straight line 80 - ( g )  is drawn broken. It intersects the curve 

6 - (6) at the points A and B. The scaled streamfunction 8 + (9r2)-’ U is given by the unevenly 
broken line. 

while the magnitude of the parameters (6.7) suggest the estimates 

9 / k  = O( 1) (A = O(r/kl”)), (6.10~) 

If we set 
(6.10~) 

(6.11a) 
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then the solution portrayed in figure 3 is largely consistent with the assumption that 

9 = O( l), U/k = O ( f  /k'/') (6.11 b) 

with the cp-scale of order unity. Accordingly, the energy balance (6.5) together with 
(4.2) and ( 4 . 5 ~ )  gives 

( u ' ) - W f 2 - + 2 2  (9" = 9K - 1) (6.12) 

correct to leading order. Since ( U 2 )  = (U)' + (( U - ( U ) ) ' ) ,  the result immediately 
explains why ( U )  (see (6 .8~) )  is smaller in magnitude than @ (see (6.8~)). 

Under the assumptions (6.9), (6.10) the leading-order terms in inverse powers of 
f / k 1 l 2  in the heat conduction equation (6.4) are 

(6.13) 

All the terms in (6.1) are of comparable size. Nevertheless, upon eliminating the term 
a&./acp by use of the real part of (6.13), it reduces to 

au 
- - d x U = d ( U o - ( U ) ) ,  
acp 

where 

(6.14a,b) 

(6.14c,d) 

Though we have dropped the highest derivatives in (6.4), the reduced equations (6.13), 
(6.14) appear to adequately describe our numerical solution. The higher derivatives 
are only required to describe internal boundary layers on length scales of order 
k 1 / 2 / f .  Even if they exist, they do not appear to control the leading-order solution. 
Further confirmation of this notion is provided by the energy balance (6.5). Our 
numerical results (6.8a,b) show that the high-order diffusive contribution made by 
(fi21ag/acp12) is negligible (see (6.12)). Therefore, upon assuming that our solution 
9(cp), U(cp)/kF,kF/W"/'f is governed by (6.13) and (6.14), it is necessarily a function 
of d and W/k alone. Since B / k  is evidently of order unity, the large-amplitude jet-like 
structure must, therefore, be traced to the moderately large size of d (see (6.7b)). 

Corresponding to the data (6.6), (6.7), the formulae (6.14c,d) give 

Uo/k = -76.24.. . . - F-'& = 0.01806.. . , (6.15a,b) 

The value of k& (= 1 - 9 - ' s i 0 )  is important because at that value of k& the 
coefficient x of U in (6 .14~)  vanishes (see (6.14b)). Below, we interpret the nature of 
our numerical solution on the basis that d is large. 

Outside the jet, where U/k% is small, the advective term -i(U/k%)9 can be 
neglected in (6.13), while the term aU/acp can be neglected in (6 .14~)  on the basis 
that sd is large. It gives 

- 
ae 
acp 

-0- - 9 - i k ,  U -  -uo + (u )  
x 

(6.16a,b) 

The former, (6.16a), says that 5 varies linearly with cp, which is confirmed by figure 
3(b). Of course, the latter, (6.16b), is singular when si = gi0 towards the right-hand 
end of the jet, where x vanishes. This means that (6.16b) can only be a reasonable 
approximation of the numerical solution to the right of the point B on figure 3(b). As cp 
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increases up to n, (6.16) indicates that x and U are roughly proportional to cp and l/cp 
respectively consistent with figure 3(a). Beyond cp = n(equivalent1y - n), a boundary 
layer, namely the jet, is eventually reached in which aU/acp becomes important. This 
occurs after 4p has increased by nearly 2n, by which stage the coefficient dx of U has 
increased from roughly zero to roughly 2 d  (see (6.14b) and figure 3b). This gives an 
e-folding distance on the left-hand side of the jet of 1 /24 ,  which is roughly 0.1 and 
confirmed by the plot on figure 3(a). During this rise in amplitude, x decreases and 
eventually vanishes (the point A on figure 3b) close to the peak amplitude of the jet. 
With further increase of cp, the sign of x changes causing the jet amplitude to decay. 
While x is negative (the interval AB on figure 3b), x remains small compatible with 
the smaller slope on the right-hand side of the jet. As x again passes through zero to 
positive values, the solution relaxes back to the exterior state described by (6.16). 

Inside the jet boundary layer, the geostrophic velocity is large and the dominant 
balance in (6.13) is 

a e  - 
acp 

- W- - -iku(e - ik-l). (6.17a) 

Its solution has the property that 
- 

10 - &-'I = constant. (6.17b) 

From a more general point of view, the nonlinear term causes the complex vector 
F-ik-' to rotate anti-clockwise about the origin with increasing cp , while the complex 
constant on the right-hand side of (6.13) encourages the linear behaviour exhibited 
outside the jet. 

It must be stressed that the focusing of the jet depends on the large size of d. 
For smaller values of d this might not occur. It is not our intention to undertake a 
comprehensive study of the parameter space in which finite-amplitude solutions exist. 
We only wish to show by example their existence and to interpret the nature of the 
particular solution reported here. We believe that the case considered is particularly 
illuminating for an understanding of the underlying structure of solutions. 

6.3. Physical interpretation 
When the geostrophic flow velocity is large, the isotherms and streamlines almost 
coincide as evinced by the leading-order balance 

ikU0 = -U (6.18) 

in the heat conduction equation (2.17), which yields the leading-order result (6.1 la). 
Essentially the resulting sinusoidal temperature distribution characterized by & (- 
k-l) is thus forced by the corresponding sinusoidal shape of the geostrophic contours. 
This feature holds for both the uniform basic state, which exists at large ( A ) ,  and for 
the finite-amplitude wave trains, which ride upon it. The smaller-order fine structure 
of the two types of solution is generally different. To understand the nature of the 
solutions it is important to remember that motion across the geostrophic contours 
is of two types. The larger ageostrophic part fluctuates on the length scale of the 
bumps, while the smaller part is a modulated departure from the geostrophic flow. 
They are identified by 

- 

and 
d!P a 

ay2 - = - -y2( u - (u) )  acp P 
(6.19) 

respectively. 
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In the case of the uniform basic state, a small out-of-phase component of the 
temperature distribution, characterized by g,., is induced by thermal diffusion and 
corresponds to the balance 

kU& = -k2& (6.20) 

in (2.17). It is this out-of-phase component which provides the buoyancy force 92& 
necessary to drive the flow against the drag induced by the Ekman boundary layers 
(see Taylor’s condition (2.12)). 

For the travelling waves, on the other hand, the situation is far more complicated. 
Since our wave is modulated on a long length scale, the plane wavefronts are tilted at 
a small angle y2cr/p to the azimuthal y-direction in real space. Since the frequency o 
is negative, they should be thought of as waves propagating predominantly radially 
inwards in the negative x-direction. In view of the small tilt, the effect is to produce 
a very large phase velocity in the negative y-direction. 

Outside the jets, both the short-length-scale ageostrophic motion and the small 
departures from geostrophy are driven across the geostrophic contours by buoyancy 
forces. They are characterized by the balances 

(6.21) 

(see (2.16) and (6.1~)  respectively: the ‘Sverdrup relations’). The ageostrophic motion 
convects the basic temperature distribution causing the buoyancy force, responsible 
for modulating the geostrophic flow, to vary linearly with time: - 

-a- N w, 
840 

(6.22~) 

while the in-phase component of temperature diffuses causing &, responsible for 
driving the ageostrophic motion, to decay linearly with time : 

(6.22b) 

(see (6.16~)). 
Inside the jet, thermal diffusion is largely unimportant and the temperature readjusts 

with time in response to the large geostrophic flow (see (6.17~)). Here the ageostrophic 
flow is unimportant in modifying the temperature. 

The energy balance (6.5) is interesting. The dominant contribution to the viscous 
dissipation 9” in Ekman layers occurs inside the jets, where U is large. On the 
other hand, since the temperature perturbation stakes the almost constant value ik-’ 
everywhere (see (6.11a), thermal energy dissipation (gK N 1) (see (6.12)) is dominated 
by losses outside the jet. According to our estimate (6.11b) the rate of working of the 
buoyancy force -Ugr is of order unity. Nevertheless, inspection of figure 3(a,b) shows 
that the total work W(- 1) is dominated by the jet contribution. The jet is triggered at 
its forward (left) edge and is accompanied by useful (positive) work. After sr passes 
through zero the collapse of the jet follows with a smaller amount of destructive 
(negative) work such that the total work is unity. Though the jet propagates in the 
negative x-direction, it should be stressed that it is not the propagation direction that 
is responsible for this forward-edge boundary layer. Rather, it is due to the ‘Stommel 
layer’ balance of the two terms on the left-hand side of (6.1~). In contrast with that 
western coast boundary layer, ours has the character of an eastern boundary layer 
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(growing to the right). That is because the P-plane effect has the opposite sign in a 
full sphere to that in a spherical shell! Incidently, there is a comparable consistency 
about the group velocity of our linear waves. For all our maximizing solutions the 
group velocity is positive (eastward) for our sphere, just as the group velocity is 
always westward in a spherical shell. Of course, in application of our results to the 
region above the Earth‘s inner solid core, these sign changes are appropriate. Finally, 
it must not be overlooked that our unbounded duct geometry imposes no restrictions 
on the modulation length scale. The limitations imposed by finite geometry lead to 
an additional condition for the applicability of the results presented in this section. 

7. Concluding remarks 
A pervading motivation for studies of the type undertaken here is to determine 

the zonal flows set up in convecting rotating systems. Early investigations by Busse 
& Cuong (1977) with the annulus geometry, Gillman (1977) with spherical shells 
and Soward (1977) with the full sphere focused attention on the Reynolds stresses 
set up by the convection to see what differential rotation they drive. One particular 
application is to the atmospheres of major planets (Busse 1994). In a recent series of 
papers, which link closely with our present study, Busse & Or (1986), Or & Busse 
(1987), Schnaubelt & Busse (1992) and Or (1994) showed that mean flows could arise 
naturally as a secondary instability riding on the thermal Rossby waves (the primary 
instability of the static state). It is interesting to see that such mean flow arises in 
our system, albeit in a completely different parameter range, as the preferred primary 
instability when the radial extent is long enough to accommodate it. This observation 
is sufficiently important to warrant further comment. 

From a general point of view, the issue of the instability leading almost directly 
to the generation of geostrophic flows has arisen previously with connection to 
Taylor’s condition in the magnetohydrodynamic context. In particular, Soward 
(1980) considered the possibility that geostrophic motion could result as a secondary 
instability from its interaction with a familly of oblique convecting rolls (the primary 
instability). Their existence plays a role very similar to the sinusoidal bumps of our 
problem and the equations governing stability (cf. Soward 1980, equation (5.6), and 
(3.3), (3.4) above) have a close resemblance. The idea, therefore, is that the presence of 
the bumps introduces the crucial longitudinal variation necessary for the mean flow 
instability, which in the absence of bumps is provided by the thermal Rossby waves. 

Or & Busse (1987) discuss the tertiary instability of their finite-amplitude mean flow 
and comment that the growth rate for unmodulated disturbances (d = 0 in their nota- 
tion) differs very little from its maximum value for some non-zero d. This appears to 
tie in well with the picture which we developed here in $04 and 5 for sufficiently large 
bumps. Specifically, in figure 2(a) at fixed r2  to the right of A, we see that, as W is 
increased above the lower stability boundary AD, a stable positive geostrophic mean 
flow develops. Generally, it is first unstable to a modulated instability as it crosses the 
curve APO but that is quickly followed by an overstable unmodulated instability as it 
crosses the broken curve BPC. Indeed, in the geophysical application, the geometrical 
constraints on the modulation length scale may result in almost entirely emptying the 
small domains of modular instability bounded by the lines connecting PBA and CPO, 
as identified in $5. In Busse & Or’s case overstability introduces a second frequency, 
in addition to the thermal Rossby wave frequency; that causes vacillation which 
leads to increasingly chaotic solutions. In contrast, our unmodulated disturbances are 
described by a single frequency. They have no radial spatial structure and are deter- 
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mined by the solutions of (4.1) independent of h. Their temporal evolution is easily 
understood by eliminating - -  t from (4.1) and considering the phase-plane portraits of the 
integral curves in the ( O r ,  &)-plane. So on crossing BPC, the focal point (Or,  Oi)(lAl) 
(corresponding to the uniform positive geostrophic flow) becomes unstable to a Hopf 
bifurcation and is then surrounded by a stable limit cycle. As 9 is increased the limit 
cycle expands and its period lengthens. This is eventually terminated by a homoclinic 
orbit which passes through the unstable static equilibrium (0,O). A global bifurcation 
follows and all solutions now converge on the third remainining equilibrium point 
(Or, Oi)(-lA 1) (corresponding to the large-amplitude negative geostrophic flow). 

Our large-amplitude negative geostrophic flows are particularly interesting. They 
appear to have no counterpart in the Or & Busse (1987) results and so are peculiar to 
our bump geometry. It should also be remembered that they can only be reached by 
the finite jump in states described above. The apparent continuous connection through 
a subcritical transition of unstable states 1 > A 2 0 (or equivalently 0 > 2 -3) 
suggested by (4.5) is illusiory. When limited to finite radial extent, the weakly 
nonlinear theory of $4.2 suggests that these modes cannot accommodate the boundary 
conditions. This leaves our upper branch 0 > A portrayed in figure 2(b) unconnected. 
We may speculate that, as A increases through negative values to zero, the influence of 
remote boundaries increases in importance and the mode of convection approximated 
by the uniform geostrophic flow a(< -9) gains a structure which our present theory 
is inadequate to describe. This branch can now be continued, but presumably remains 
hanging disconnected from the static state. 

It must be stressed that the only nonlinearity retained in our governing equations 
is the convection of heat by the geostrophic flow. Both the heat transport by the 
ageostrophic flow and the momentum transport by the Reynolds stresses have been 
ignored as a result of our asymptotic approximations. These approximations appear 
to limit the possible temporal structures. Indeed once the large-amplitude geostrophic 
flow is attained the only further transition found is the modulated wave identified 
in $5. The ensuing finite-amplitude wave riding on it appears to be stable within 
the framework of the equations we analysed. Or & Busse (1987) remark that the 
mean flow instability reduces the radial heat transport below that induced by the 
thermal Rossby waves. Though we cannot make that comparison, the numerical 
study reported in $6 shows that the mean heat transport ( X )  by the modulated 
instability is also reduced below that produced by the uniform mean flow. Even for 
the large-amplitude jet the reduction is small (see (6.8b,d)) but nevertheless the trend 
was found consistently for all parameters that we investigated. 

Finally, we remark briefly on the Bell’s (1993) results reported in his thesis, which 
are not based on the present asymptotic reduction of the governing equations. Instead 
the entire Busse & Or (1986) quasi-geostrophic equations were employed. Conseqently, 
the Ekman number remains explicitly in the system and various small values of it 
were employed. He was thus able to identify the different regimes of linear instability 
with increasing bump size (at fixed Rayleigh number) from thermal Rossby to the 
modulated oscillatory and steady flow instabilities isolated here. Following the primary 
bifurcations to finite-amplitude states, some of his secondary instabilities produced 
structures very similar to those displayed by Or & Busse (1987) for their mean flow 
instabilities. His results suggest that, as the magnitude of the convection increases, 
the sensitivity of the motion to the bump structure decreases. This reinforces the 
self-evident fact that the large-amplitude results reported here are only applicable for 
sufficiently small Ekman number. 
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Appendix A 
Many of the stability calculations involve finding the maximum value of the real 

part 9 of the complex function B ( d )  = 9 - iB,  which solves the quadratic equation 

where A, B, C are real constants, while d is the real parameter upon which B 
depends. The maximum is characterized by d 9 / d d  = 0 and given by the solution of 

[(4A - C)9  - ABI2 = (C2 + B2)(92 + A2). 

.F2 = [(4A - C ) A  + B9] - + A2).  (A 2b) 

(A 2 4  

The corresponding imaginary part of B is given by 

At this maximum, the scaled phase and real group velocities are 

respectively, where 
% - (4A-C)A+B9 
- -  
9 AC+B2? ’ 

Appendix B 

to maximize the growth rate q, where 
The objective is to find the most unstable modes of (5.2) obtained by choosing d 

( 4  + p 2 ) / k 2  = 2 - 1. 

In our analysis of it below, we find it convenient to introduce the parameter Y defined 
by 

With the substitutions proposed in 95.1, the results of Appendix A are as follows. 
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The condition (A2a) characterizing the most unstable modes reduces to 

9(A,Y,3)  = 0, (B 3a) 

where 

s ( A , 9 , 2 )  := [Y’ - 2(12A- 5)Y + 113’ + 2 ( 9  + 1)(5A- 1)3 + (1 - A)’. (B3b) 

At fixed 2, it defines Y as a function of A,  and consequently 9 / k  as a function of 
r2/k. The corresponding frequency defined by (A2b) is 

F =  {~[-(22-1)2Y+(3A+2-1)]/Y} 11’ , 

while, using (A2e), the phase and group velocities determined by (A2c,d) are 

2% 
Vg = - 

V - 9 .  
2(2Y + 5A + 3 - 1) 

V =  
2 9 - A + 2 + 1  ’ 

When the values of r2/k and @ / k  (2 k / T 2 )  are specified the corresponding values 
of A and 9 are determined by (4.2) and (B2). Whence 2 is the solution of the 
quadratic equation (B3). Of course, only those real roots 2 of (B3), which also ensure 
that the frequency F of (B4) is real, are acceptable. In turn, V, V,, d are determined 
by (B5) and (5.74. The value of 2 also fixes the magnitude of the maximized growth 
rate by the formula (Bl )  for q / k 2 .  

Throughout $5 it is assumed that the neutral curve q = p = 0, on which 2 = 1, 
coincides with the stability boundary. That is only the case if the curves with positive 
growth rate q,  for which 

do not cross it. To see that this does not happen, we note that the crossing of two 
neighbouring curves 2 and 3 + 622 would lie on the envelope of the one-parameter 
familly of curves (B3) and be determined by the additional relation 89/82 = 0. 
Together they determine the envelope 

3 >  1, (B 6) 

(9 + 1)’/Y = -( 1 - A)’/A.  (B 7) 

All points on the envelope lie in the quadrants where A and Y have opposite signs. 
These envelopes are irrelevant because, according to (B2), the product A Y  must be 
positive. 

On the stability boundary, our equation (B3), namely 

9 ( A , 9 , 2 ) = 0  with Y=A/tan’EA, 2 = 1 ,  (B 8) 
yields the simple formula (5.4) for A in terms of &A. The other expressions (5.7) follow 
immediately from (B4), (B5). Note, however, that (B8) has two solutions; the second 
is A = 0 and, on the curve it defines, the frequency 9 is infinite. On neighbouring 
curves 9 =constant, 9 is only real for 3 < 1. They correspond to decaying modes 
which are of no interest to us. 

Appendix C 
Main dimensionless parameters 

Ekman number 
Rayleigh number 
Prandtl number 

(1.7) 
(2.7) 
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Aspect ratio D / H  
Boundary slope r 
Geostrophic contour tilt Y 

Derived dimensionless parameters 

Slope parameter S := ( D / H ) q  
Renormalized Rayleigh number W := R a / S  
Bump parameter f :=E-  q y 114 112 

Dimensional characteristics 

Units of length and time D and D 2 / ~  

< 1  (1.15) 
O(1)  (1.15) 
<<1 (1.12) 

< 1  (1.9) 
= O(1) (1.10) 
= O(1) (1.13) 

Bump height VDh h := x + ( y / k )  sin(ky) (1.1 l a )  
Long azimuthal length ( W ) i  i = Y2Y (2.13) 
Travelling wave coordinate (3.2a) q := ph  + a[ - cot 

Bump azimuthal wavenumber ( l / D ) k  k = 0(1) ( 2 . 4 ~ )  
Radial wavenumber ( l / D ) P  ( 3 . 2 ~ )  
Modulation wavenumber ( Y 2 / D b  ( 3 . 2 ~ )  

or equivalently ( El l2  /2q D ) P 2 d  d = 2 ( f  //?)2a (3.3b) 

Complex growth rate (U/D2)P p : = q - - o  (3.2b) 
or equivalently (K /D2)[k29  - p2 - k2]  9 := 9 - i 9  (3.4b) 

q + p2 + k2 = k 2 9  ( 3 . 4 ~ )  
o = k2F (3.4d) 

Modulation phase velocity (D/Y24C c := o / a  ( 3 . 2 ~ )  

c = 2 ( f  /p)2k2V (5.7b) 
or equivalently ( 2 ~ D / E ' / ~ ~ ) ( k / f i ) ~ % ?  V := 9/d (A2c)  

Modulation group velocity (D/Y2K-)Cg C,  := do/da (3.2b) 
or equivalently ( 2 q D / E ' / 2 ~ ) ( k / P ) 2 V g  V, := d%/dd  (A2d) 

(Real case dq/da = 0) cg = 2 ( f  /p)2k2Wg ( 5 . 7 ~ )  

Parametric representation 

Phase-lag angle function 42) C O S ~  ~(9) := k29/(r29) ( C l a )  

Direct mode driving function A(9)  := :(f 2 / k )  sin(2~(2)) ( C l b )  

Inverse formula f 2 / k  = 2A(9) /  sin(2e(9)) (C2a) 

W / k  = (9 tan~(9))/A(9) (C2b) 

Stationary convection boundary p = 0 

Phase-lag angle E := E ( 9 )  
Stability boundary A ( 2 )  = 1 
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Nonlinear usage 

Phase-lag angle &A := &(I) (4.3) 
Direct mode driving parameter A := A( 1)  A2 = (9W2 - k 2 ) / W 2  (4.2) 

Finite-amplitude constants 

Geostrophic velocity 42 := B(A - 1) (4.5a) 
Temperature 0 := 0, + iOi (4.5b) 

0, := -%/(Br 2, (4.5b) 
0i := 42A/(kT2) = -Or tan&A (4.5b) 

REFERENCES 

ANUFRIEV, A. P. & BRAGINSKY, S. I. 1975 The effect of a magnetic field on the stream of a rotating 
liquid at a rough surface. Mag. Gidrod. 4, 62-68 (English transl. Magnetohydrodynamics 11, 
461-467 (1976)). 

ANUFRIEV, A. P. & BRAGINSKY, S. I. 1977 Effect of irregularities of the boundary of the Earth’s core 
on the speed of the fluid and on the magnetic field. 111. Geomag. Aeron. 17, 742-750 (English 
transl. pp. 492-496). 

BELL, P. I. 1993 The effect of bumps on convection in the Earth’s core. PhD dissertation, University 
of Newcastle upon Tyne. 

BUSSE, F. H. 1970 Thermal instabilities in rapidly rotating systems. J. Fluid Mech. 44, 441-460. 
BUSSE, F. H. 1994 Convection driven zonal flows and vortices in the major planets. Chaos 4,123-134. 
BUSSE, F. H. & CUONG, P. G. 1977 Convection in rapidly rotating spherical fluid shells. Geophys. 

BUSSE, F. H. & HOOD, L. L. 1982 Differential rotation driven by convection in a rapidly rotating 

BUSSE, F. H. & OR, A. C. 1986 Convection in a rotating cylindrical annulus: thermal Rossby waves. 

BUSSE, F. H. & WICHT, J. 1992 A simple dynamo caused by conductivity variations. Geophys. 

CARRIGAN, C. R. & BUSSE, F. H. 1983 An experimental and theoretical investigation of the onset of 

EWEN, S. A. & SOWARD, A. M. 1994 Phase mixed rotating magnetoconvection and Taylor’s condition 

FEARN, D. R. & PROCTOR, M. R. E. 1992 Magnetostrophic balance in non-axisymmetric, non- 

GILLMAN, P. H. 1977 Non-linear dynamics of Boussinesq convection in a deep rotating spherical 

GREENSPAN, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press. 
GUBBINS, D. & RICHARDS, M. 1986 Coupling of the core dynamo and mantle: thermal or 

topographic? Geophys. Res. Lett. 13, 1521-1524. 
GUCKENHEIMER, J. & HOLMES, P. 1983 Nonlinear Oscillations, Dynamical Systems, and Bifurcations 

of Vector Fields. Springer. 
HIDE, R. 1967 Motions of the Earth’s core and mantle and variations of the main geomagnetic 

field. Science 157, 55-56. 
HIDE, R. 1989 Fluctuations in the Earth’s rotation and the topography of the core-mantle interface. 

Phil. Trans. R.  SOC. Lond. A 328, 351-363. 
HIDE, R., CLAYTON, R. W., HAGER, B. H., SPIETH, M. A. & VOORHIES, C. V. 1993 Topographic core- 

mantle coupling and fluctuations in the Earth’s rotation. In Relating Geophysical Structures 
and Processes, The Jeffreys Volumes (ed. K. Aki & R. Dmowska), vol. 76, pp. 107-120. 
AGU/IUGG. 

Astrophys. Fluid Dyn. 8, 17-44. 

annulus. Geophys. Astrophys. Fluid Dyn. 21, 59-74. 

J. Fluid Mech. 166, 173-187. 

Astrophys. Fluid Dyn. 64, 135-144. 

convection in rotating spherical shells. J. Fluid Mech. 126, 287-305. 

I. Amplitude equations. Geophys. Astrophys. Fluid Dyn. 77, 209-230. 

standard dynamo models. Geophys. Astrophys. Fluid Dyn. 67, 117-128. 

shell. Geophys. Astrophys. Fluid Dyn. 8, 93-135. 

HOLYER, J. Y. 1981 On the collective instability of salt fingers. J. Fluid Mech. 110, 195-207. 



180 P. I. Bell and A.  M .  Soward 

JAULT, D. & LE Mo&L, J.-L. 1989 The topographic torque associated with a tangentially geostraphic 
motion at the core surface and inferences on he flow inside the core. Geophys. Astrophys. Fluid 
Dyn. 48,273-296. 

JAULT, D. & LE MOLTEL, J.-L. 1993 Circulation in the liquid core and coupling with the mantle. Adv. 
Space Res. 13, 11,221-233. 

KUANG, W. & BLOXHAM, J. 1993 On the effect of boundary topography on flow in the Earth’s core. 
Geophys. Astrophys. Fluid Dyn. 72, 161-195. 

MOFFATT, H. K. & DILLON, R. F. 1976 The correlation between gravitational and geomagnetic fields 
caused by interaction of the core fluid motion with a bumpy coremantle interface. Phys. 
Earth Planet. Inter. 13, 68-78. 

MUNK, W. H. 1950 On the wind-driven ocean circulation. J.  Met. 7 ,  79-93. 
Or, A. C. 1994 Chaotic transitions of convection rolls in a rapidly rotating annulus. J.  Fluid Mech. 

OR, A. C. & BUSSE, E H. 1987 Convection in a rotating cylindrical annulus. Part 2. Transitions to 

PEDLOSKY, J. 1979 Geophysical Fluid Dynamics. Springer. 
ROBERTS, P. H. 1968 On the thermal instability of a rotating fluid sphere containing heat sources. 

ROBERTS, P. H. 1988 On topographic coremantle coupling. Geophys. Astrophys. Fluid Dyn. 44, 

ROBERTS, P. H. & SOWARD, A. M. 1992 Dynamo theory. Ann. Rev. Fluid Mech. 24,459-512. 
SCHNAUBELT, M. & BUSSE, F. H. 1990 Convection in a rotating cylindrical annulus with rigid 

boundaries. In Nonlinear evolution of spatietemporal structures in dissipative continuous systems 
(ed. F. H. Busse & L. Kramer). NATO AS1 Series B, vol. 225, pp. 67-72. Plenum. 

SCHNAUBELT, M. & BUSSE, F. H. 1992 Convection in a rotating cylindrical annulus. Part 3. Vacillating 
and spatially modulated flows. J.  Fluid Mech. 245, 155-173. 

SOWARD, A. M. 1977 On the finite amplitude thermal instability of a rapidly rotating fluid sphere. 
Geophys. Astrophys. Fluid Dyn. 9, 19-74. 

SOWARD, A. M.1980 Finite-amplitude thermal convection and geostrophic flow in a rotating magnetic 
system. J.  Fluid Mech. 98, 449-471. 

STEWARTSON, K. 1957 On almost rigid rotations. J .  Fluid Mech. 3, 17-26. 
STOMMEL, H. 1948 The westward intensification of wind-driven ocean currents. Trans. Am. Geophys. 

Union 99, 202-206. 
SUN, Z.-P., SCHUBERT, G. & GLATZMAIER, G. A. 1994 Numerical simulations of thermal convection 

in a rapidly rotating spherical shell cooled inhomogeneously from above. Geophys. Astrophys. 
Fluid Dyn. 75, 199-226. 

SVERDRUP, H. U. 1947 Wind-driven currents in a baroclinic ocean; with application to the equatorial 
currents of the eastern Pacific. Proc. Natl Acad. Sci. 33, 318-326. 

TAYLOR, J. B. 1963 The magneto-hydrodynamics of a rotating fluid and the Earth’s dynamo problem. 
Proc R .  SOC. Lond. A 274, 274-283. 

ZHANG, K. 1992 Spiralling columnar convection in rapidly rotating spherical fluid shells. J.  Fluid 
Mech. 236, 535-556. 

ZHANG, K. & GUBBINS, D. 1992 On convection in the Earth’s core driven by lateral temperature 
variations in the lower mantle. Geophys. J .  Zntl 108, 247-255. 

ZHANG, K. & GUBBINS, D. 1993 Convection in a rotating spherical shell with an inhomogenious 
temperature boundary at infinite Prandtl number. J .  Fluid Mech. 250,209-232. 

261, 1-19. 

asymmetric and vascillating flow. J.  Fluid Mech. 174, 313-326. 

Phil. Trans. R.  SOC. Lond. A 263, 93-117. 

181-187. 




